
QueryConf – 2019
“Event Driven” Extensions

atul@polylogyx.com

Agenda

• Poly who?
• What’s our deal with osquery? What’s our background?

• Evented tables in an extension
• Why? Why not in core?

• Challenges
• Volume of data
• Extension management, deployment, clean up
• Configuration

• Things we tried, things that worked, things that didn’t

• Wishlist for a better world

Background to our story

• Whether Matrix or Security ‘agents
are scary’

• Too many of them
• Agent fatigue, deployment challenges,

upgrade challenges, management
challenges, redundant functionalities,
slow path to innovation

• Yet “Agent” is the dominant form
factor for endpoint security
• Agent-less?? Mmm..maybe for simpler

use cases

Who are we – Our story

• Started by endpoint security folks who were tired of
hearing:

“’Agent’ is a 4-letter word”

• Our vision – One “agent” to rule them all
• Build an agent platform with an SDK
• Let every new tech be a plug-in, Get rid of monolithic agents
• Set up a market place approach for plug-ins
• Self contained plug-ins for ease of development,

deployment, inter plug-in communication, foster as well as
reduce time for innovation, democratization & all the good
stuff

• And then ‘osquery’ happened..
• Let’s build an ‘extension’ – How about adding “real time”

events on Windows and make an EDR out of it?

Events..why?

• Security Models are evolving
• Signature->IoCs-> TTPs e.g. MITRE ATT&CK
• Properties + Events => Better coverage (no blind spots), Context, Timeliness
• More muscle for IR/ThreatHunting Query Packs

• Isn’t it same as “sysmon + osquery”?
• Yes and no
• Sysmon – different agent/provisioning/packaging system, when we are looking for

‘The One’
• Beauty of SQL missing (Can’t do ‘JOINS’ with core tables) – reduces osquery to an

event forwarder
• Dependence on code we don’t control

• Can we not do in core?
• Possibly, but we really wanted to build on extension model
• Not everything should belong to core or we are back to ‘monolithic’ agent

check-with-the-experts time !!

PolyLogyx Extension – “Build-It” Time

Goals
• Extend Windows Osquery with tables off real time events

• Files, process, registry, socket, dns…(20+ tables today)

• The entire extension to be packaged as a single binary
• Carry all the dependents within

• Install/uninstall should be clean

• Follow existing osquery flags/config/provisioning
mechanisms

• --disable_events, --events_expiry, --events_max

• Single agent model

• Undiluted SQL syntax

• Should work with the community version of osquery and its
configs

• Not just a white-labeled opaque set

Constraints
• No osquery managed Pub-Sub in extension

• Create our own

• No feasible access to osquery’s persistence (e.g. osquery.db)
• Create our own DB management

• No extension specific config schema

• No support for ‘streaming’. Have to make it work with diff-
based scheduled queries

• Potentially high volume of data over thrift IPC

• No shutdown or config-refresh notification in extension

SQ, LQ,
Conf

PolyLogyx
Osquery

extension

osquery
IPC Pipe

Extension
persistence store

osquery
fleet

manager

osquery
Core

Agent

Remote query
submission and
data collection

osquery.db

user

kernel

My Beautiful ‘architecture’ diagram

Event
Publisher

(e.g. Kernel
module)

Install dependents
& Subscribe

Publish

Register Tables

osquery with events is good, but what about
‘user focus’?
• No good if (RAM usage, CPU spikes, Queries-not-returning)

• Event Volumes, diffing engine, poorly crafted queries, event flags…(recall all
the ‘pitfalls’)

• If you don’t get it right & Windows being so ‘chatty’.

=>

Agent Performance with events

• Type of persistent store
• File, DB (RocksDB, SQLite..), Event Log

• Depending on the type/volume of events, read/write contention, query schedules

• Managing event lifecycle
• Osquery events follow the flags --disable_events, --events_expiry, --events_max

• Support those or use custom flags

• Configuration for event filters
• Extend the config

• Keep filters as close as possible to event publication

• Support refreshing the config in extension (in a thread or a config plugin)

auto status = osquery::Registry::call("config", { { "action", "genConfig" } }, response);

{
schedule {
}
filters {

include {
};
exclude {
};

}
}

Filters in PolyLogyx Extension

Query with evented tables

• Example query: ““select * from win_file_events where md5= ‘<>’”;

• Returning ‘events’ from extended tables in response to a query
• virtual void generator(RowYield& yield, QueryContext& context) – Not available to

external plugins

• virtual osquery::QueryData <Table>::generate(osquery::QueryContext& Request)
• Redundant events processing, diffing penalties, IPC limitationsQueryContext

• QueryContext
• Shove the SQL constrains in extension (Virtual SQL tables)

• Can’t implement the ‘differential’ logic in extension – Bummer 

• Directly impacted by the count of events
• Use filters wherever possible

Handling shutdown notifications

• Clean up Pub/Sub infrastructure
• Unsubscribe to notifications

• Clean up any dropped components

• Earlier versions – SIGUSR1 mapped to SIGILL
• waitForShutdown() – No working on Windows

• -#define SIGUSR1 SIGILL /+#define SIGUSR1 SIGTERM

• Newer versions - Outside monitoring service
• OS notification on osqueryd service shutdown

• Trigger cleanup

Wishlist

• Rule book for extensions
• Avoid namespace conflicts

• Expand QueryContext
• Provision for streaming of events
• Shutdown notification in extension
• Extensions aware fleet management

• Room for extensions managements

• Pub/Sub across extension
• Common event bus
• Common event schema

• Community/commercial extension ecosystem

atul@polylogyx.com
Slack: openplgx

twitter: @polylogyx

Github: https://github.com/polylogyx

mailto:atul@polylogyx.com
https://github.com/polylogyx

