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Agenda

• Poly who?
• What’s our deal with osquery? What’s our background?

• Evented tables in an extension
• Why? Why not in core?

• Challenges
• Volume of data
• Extension management, deployment, clean up
• Configuration

• Things we tried, things that worked, things that didn’t

• Wishlist for a better world



Background to our story

• Whether Matrix or Security  ‘agents 
are scary’

• Too many of them
• Agent fatigue, deployment challenges, 

upgrade challenges, management 
challenges, redundant functionalities, 
slow path to innovation

• Yet “Agent” is the dominant form 
factor for endpoint security
• Agent-less?? Mmm..maybe for simpler 

use cases



Who are we – Our story

• Started by endpoint security folks who were tired of 
hearing: 

“’Agent’ is a 4-letter word”

• Our vision – One “agent” to rule them all
• Build an agent platform with an SDK
• Let every new tech be a plug-in, Get rid of monolithic agents
• Set up a market place approach for plug-ins
• Self contained plug-ins for ease of development, 

deployment, inter plug-in communication, foster as well as 
reduce time for innovation, democratization & all the good 
stuff

• And then ‘osquery’ happened..
• Let’s build an ‘extension’ – How about adding “real time” 

events on Windows and make an EDR out of it?



Events..why?

• Security Models are evolving 
• Signature->IoCs-> TTPs e.g. MITRE ATT&CK
• Properties + Events => Better coverage (no blind spots), Context, Timeliness
• More muscle for IR/ThreatHunting Query Packs

• Isn’t it same as “sysmon + osquery”?
• Yes and no
• Sysmon – different agent/provisioning/packaging system, when we are looking for 

‘The One’
• Beauty of SQL missing (Can’t do ‘JOINS’ with core tables) – reduces osquery to an 

event forwarder
• Dependence on code we don’t control

• Can we not do in core?
• Possibly, but we really wanted to build on extension model
• Not everything should belong to core or we are back to ‘monolithic’ agent



check-with-the-experts time !!



PolyLogyx Extension – “Build-It” Time

Goals
• Extend Windows Osquery with tables off real time events

• Files, process, registry, socket, dns…(20+ tables today)

• The entire extension to be packaged as a single binary
• Carry all the dependents within

• Install/uninstall should be clean

• Follow existing osquery flags/config/provisioning 
mechanisms

• --disable_events, --events_expiry, --events_max

• Single agent model

• Undiluted SQL syntax

• Should work with the community version of osquery and its 
configs

• Not just a white-labeled opaque set

Constraints
• No osquery managed Pub-Sub in extension

• Create our own

• No feasible access to osquery’s persistence (e.g. osquery.db)
• Create our own DB management

• No extension specific config schema

• No support for ‘streaming’. Have to make it work with diff-
based scheduled queries

• Potentially high volume of data over thrift IPC

• No shutdown or config-refresh notification in extension
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osquery with events is good, but what about 
‘user focus’?
• No good if (RAM usage, CPU spikes, Queries-not-returning) 

• Event Volumes, diffing engine, poorly crafted queries, event flags…(recall all 
the ‘pitfalls’)

• If you don’t get it right & Windows being so ‘chatty’.

=>



Agent Performance with events

• Type of persistent store
• File, DB (RocksDB, SQLite..), Event Log

• Depending on the type/volume of events, read/write contention, query schedules

• Managing event lifecycle
• Osquery events follow the flags --disable_events, --events_expiry, --events_max

• Support those or use custom flags

• Configuration for event filters
• Extend the config

• Keep filters as close as possible to event publication

• Support refreshing the config in extension (in a thread or a config plugin)

auto status = osquery::Registry::call("config", { { "action", "genConfig" } }, response);

{
schedule {
}
filters {

include {
};
exclude {
};

}
}



Filters in PolyLogyx Extension



Query with evented tables

• Example query: ““select * from win_file_events where md5= ‘<>’”;

• Returning ‘events’ from extended tables in response to a query
• virtual void generator(RowYield& yield, QueryContext& context) – Not available to 

external plugins

• virtual osquery::QueryData <Table>::generate(osquery::QueryContext& Request)
• Redundant events processing, diffing penalties, IPC limitationsQueryContext

• QueryContext
• Shove the SQL constrains in extension (Virtual SQL tables)

• Can’t implement the ‘differential’ logic in extension – Bummer 

• Directly impacted by the count of events
• Use filters wherever possible



Handling shutdown notifications

• Clean up Pub/Sub infrastructure
• Unsubscribe to notifications

• Clean up any dropped components

• Earlier versions – SIGUSR1 mapped to SIGILL
• waitForShutdown() – No working on Windows

• -#define SIGUSR1 SIGILL /+#define SIGUSR1 SIGTERM

• Newer versions - Outside monitoring service
• OS notification on osqueryd service shutdown

• Trigger cleanup



Wishlist

• Rule book for extensions
• Avoid namespace conflicts

• Expand QueryContext
• Provision for streaming of events
• Shutdown notification in extension
• Extensions aware fleet management

• Room for extensions managements

• Pub/Sub across extension
• Common event bus
• Common event schema

• Community/commercial extension ecosystem
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